

Maratha Vidya Prasarak Samaj's

COMMERCE MANAGEMENT & COMPUTER SCIENCE (CMCS) COLLEGE,

Gangapur Road, Nashik-13

Programme Outcome, Programme Specific Outcome and Course Outcome
CBCS 2019 Pattern

B.Sc. (Regular)

B.Sc. (Mathematics)

Sr No	Programme Outcomes
PO1	Scientific temper will be developed in Students.
PO2	Students will acquire basic Practical skills & Technical knowledge
	along with domain knowledge of different subjects in the science
	stream.
PO3	Students will become employable; they will be eligible for career
	opportunities in Industry, or will be able to opt for entrepreneurship.
PO4	Students will possess basic subject knowledge required for higher
	studies, professional and applied courses like Management Studies,
	Law etc.

Sr No	Programme Specific Outcomes
PSO1	Think in a critical manner.
PSO2	Know when there is a need for information, to be able to identify,
	locate, evaluate, and effectively use that information for the issue or
	problem at hand.
PSO3	Formulate and develop mathematical arguments in a logical manner.

PSO4	Acquire good knowledge and understanding in advanced areas of
	mathematics and statistics, chosen by the student from the given
	courses.
PSO5	Understand, formulate and use quantitative models arising in social
	science, business and other contexts.

Subject	Course Outcomes (F.Y.B.Sc)
Algebra	CO1 The mathematical maturity of students in their current
	and future courses shall develop.
	CO2 The student develops theoretical, applied and
	computational skills.
	CO3 The student gains confidence in proving theorems and
	solving problems.
Calculus - I	CO1 Give the students a sufficient knowledge of fundamental
	principles, methods and a clear perception of in numerous
	power of mathematical ideas.
	CO2 Students will be able to identify areas in mathematics and
	other fields where Calculus is useful.
	CO3 Students will be able to write detailed solutions using
	appropriate mathematical language.
Analytical	CO1 Recognize the system of linear equations, identify the
Geometry	existence of solutions and if there are solutions, solve
	equations.
	CO2 Define the system of linear equations. Define the system
	of linear equations by using matrices.
	CO3 Investigate the existence of solutions using rank of the
	extended matrix and matrix of coefficients.
Calculus - II	CO1 A student should get a relational understanding of
	mathematical concepts.
	CO2 Concerned structures, and should be able to follow the
	patterns involved, mathematical reasoning.

Mathematics	CO1 To visualise algebraic and
Practical 1	analytical results geometrically.
& 2	CO2 To design practical demonstrations of mathematical
	results/formulae or the concepts.
	CO3 To exhibit relatedness of mathematics with day to day
	life problems.
	CO4 To explain visually some abstract concepts by using
	three dimensional models.

B.Sc. (Chemistry)

S.R.	Programme Outcomes
PO1	Demonstrate, solve and an understanding of major concepts in all
	disciplines of chemistry.
PO2	Solve the problem and also think methodically, independently and
	draw a logical conclusion.
PO3	Employ critical thinking and the scientific knowledge to design, carry
	out, record and analyse the results of chemical reactions.
PO4	Create an awareness of the impact of chemistry on the environment,
	society, and development outside the scientific community.
PO5	Find out the green route for chemical reaction for sustainable
	development.

S.R.	Programme Specific Outcomes
PSO1	Gain the knowledge of Chemistry through theory and practical's.
PSO2	To explain nomenclature, stereochemistry, structures, reactivity, and
	mechanism of the chemical reactions.
PSO3	Identify chemical formulae and solve numerical problems.
PSO4	Use modern chemical tools, Models, Chem-draw, Charts and
	Equipment.
PSO5	Know structure-activity relationship.
PSO6	Understand good laboratory practices and safety.
PSO7	Develop research oriented skills.
PSO8	Make aware and handle the sophisticated instruments/equipment.

Subject	Course Outcomes (F.Y.B.Sc)
Physical	CO1 Students will be able to apply thermodynamic principles
Chemistry	to physical and chemical process.
	CO2 Calculations of enthalpy, Bond energy, Bond dissociation
	energy, resonance energy.
	CO3 Variation of enthalpy with temperature –Kirchoff's
	equation.
	CO4 Third law of thermodynamic and its applications.
	CO5 Relation between Free energy and equilibrium and factors
	affecting on equilibrium constant.
	CO6 Gas equilibrium, equilibrium constant and molecular
	interpretation of equilibrium constant.
	CO7 Concept to ionization process occurred in acids, bases and
	pH scale.
	CO8 Related concepts such as Common ion effect hydrolysis
	constant, ionic product, solubility product.
Organic	CO1 The students are expected to understand the fundamentals,
Chemistry	principles, and recent developments in the subject area.
	CO2 It is expected to inspire and boost interest of the students
	towards chemistry as the main subject.
	CO3 To familiarize with current and recent developments in
	Chemistry.
	CO4 To create foundation for research and development in
	Chemistry.
Inorganic	CO1 Various theories and principles applied to revel atomic
Chemistry	structure.
	CO2 Origin of quantum mechanics and its need to understand
	structure of hydrogen atom.
	CO3 Application of non-bonded lone pairs in shape of
	molecule.
	CO4 Explain rules for filling electrons in various orbitals-
	Aufbau's principle, Pauli exclusion principle, Hund's rule of
	maximum multiplicity.
Analytical	CO1 Calculations of mole, molar concentrations and various
Chemistry	units of concentrations which will be helpful for preparation of
	solution.

	CO2 Relation between molecular formula and empirical
	formula.
	CO3 Basics of chromatography and types of chromatography.
	CO4 Compare qualitative and quantitative analyses.
Chemistry	CO1 Determination of physical constant: Melting point,
Practical	Boiling point.
1&2	CO2 drawing organic molecule and arrow pushing concepts.
	CO3 Strength of Acid and Base.
	CO4 Common names and IUPAC nomenclature system of
	chemicals.
	CO5 Name oh Alkane, Alkanes, Alkenes and Alkynes.
	CO6 Preparation methods of Alkane, Alkanes and Alkynes
	including Hydrocarbons.
	CO7 Application of Hackle's rule of organic compounds to
	find the compounds are aromatic/ non aromatic.

B.Sc. (Botany)

S.R.	Programme Outcomes
PO1	Students know about different types of lower & higher plants their
	evolution in from algae to angiosperm & also their economic and
	ecological importance.
PO2	Cell biology gives knowledge about cell organelles & their functions.
PO3	Molecular biology gives knowledge about chemical properties of
	nucleic acid and their role in living systems.
PO4	They knows economic importance of various plant products &
	artificial methods of plant propagation.
PO5	Use modern Botanical techniques and decent equipment.
PO6	To inculcates the scientific temperament in the students and outside
	the scientific community.

S.R.	Programme Specific Outcomes
PSO1	Students acquire fundamental Botanical knowledge through theory
	and practical's.
PSO2	To explain basis plant of life, reproduction and their survival in
	nature.
PSO3	Helped to understand role of living and fossil plants in our life.
PSO4	Understand good laboratory practices and safety.
PSO5	To create awareness about cultivation, conservation and sustainable
	utilization of biodiversity.
PSO6	Students able to start nursery, mushroom cultivation, bio fertilizer
	production, fruit preservation and horticultural practices.
PSO7	To create awareness about cultivation, conservation and sustainable
	utilization of biodiversity.

Subject	Course Outcomes (F.Y.B.Sc)
Plant Life	CO1 Basic idea regarding lower and higher cryptogams.
And	CO2 Introduction to higher plants i.e. phanerogams (
Utilization I	Gymnosperms and Angiosperms)
	CO3 To study different classification systems to classify
	Kingdom Plantae.
	CO4 Utilization of algae, fungi, lichens and bryophytes in
	different sectors.
Plant	CO1 Basic terminology in plant morphology.
Morphology	CO2 Descriptive and interpretative morphology of plants.
and	CO3 Complete study of reproductive parts such as
Anatomy	inflorescence, flower and fruit.
	CO4 Introduction to plant anatomy including types of tissues
	and their organization in plants.
Plant Life	CO1 Introduction to vascular plants including pteridophytes,
And	gymnosperms and angiosperms.
Utilization	CO2 Study of above groups with their representative member
II	in detail.
	CO3 Introduction to Angiosperms classification.
	CO4 Utilization and economic importance of pteridophytes,
	gymnosperms and angiosperms in different sectors.
Principles	CO1 Introduction to Plant Physiology and Cell Biology.
of Plant	CO2 Study of different physiological processes such as
Science	Diffusion, Osmosis, Plasmolysis and Plant growth.
	CO3 Ultrastructure studies of cell and chloroplast.
	CO4 Study of cell cycle in plants with detailed study of mitosis
	and meiosis.
	CO5 Introduction and scope of molecular biology, central
	dogma of molecular biology.
	CO6 Study of DNA and RNA in detail.
	CO7 DNA Replication with its types.

Botany	CO1 Study of plant life cycles including Algae, Fungi and
Practical	Bryophytes.
Based on	CO2 Exposure to f Mushroom Cultivation.
1&2	CO3 Introducing basic terms and concepts related to
	Angiosperms Taxonomy.
	CO4 Study of plant life cycles including Pteridophytes and
	gymnosperms.
	CO5 Introducing basic terms and concepts related cell biology
	such as mitosis and meiosis.
	CO6 Practical studies of plant processes in Plant Physiology.

B.Sc. (Physics)

S.R.	Programme Outcomes
PO1	Demonstrate, solve and an understanding of major concepts in all
	disciplines of physics.
PO2	Solve the problem and also think methodically, independently and
	draw a logical conclusion.
PO3	Employ critical thinking and the scientific knowledge to design, carry
	out, record and analyse the results of Physics experiments.
PO4	Create an awareness of the impact of Physics on the society, and
	development outside the scientific community.
PO5	To inculcate the scientific temperament in the students and outside
	the scientific community.

S.R.	Programme Specific Outcomes
PSO1	Gain the knowledge of Physics through theory and practical's.
PSO2	Understand good laboratory practices and safety.
PSO3	Develop research oriented skills.
PSO4	Make aware and handle the sophisticated instruments/equipment.

Subject	Course Outcomes (F.Y.B.Sc)
Mechanics and	CO1 To understand the basic terms related to motion.
Properties of	CO2 Introducing Newton's laws of motion.
Matter	CO3 Studying different kinds of energy.
	CO4 Concept of Fluid Mechanics in physics.
	CO5 To study various Properties of Matter.
Physics	CO1 To understand the general structure of atom,
Principles and	spectrum of hydrogen atom.
Applications	CO2 To understand the atomic excitation and LASER
	principles.
	CO3 To understand the bonding mechanism and its
	different types
	CO4 To demonstrate an understanding of electromagnetic
	waves and its spectrum.

Heat and Thermodynamics	CO5 Understand the types and sources of electromagnetic waves and applications. CO6 To demonstrate quantitative problem solving skills in all the topics covered. CO1 To study basic concepts related to Fundamentals of Thermodynamics CO2 To understand Applied Thermodynamics. CO3 To study Heat Transfer Mechanisms indetail. CO4 To study different concepts related to Thermometry.
Electricity and Magnetism	CO1 To understand the concept of the electric force, electric field and electric potential for stationary charges. CO2 Able to calculate electrostatic field and potential of charge distributions using Coulomb's law and Gauss's law. CO3 To understand the dielectric phenomenon and effect of electric field on dielectric CO4 To Study magnetic field for steady currents using Biot-Savart and Ampere's Circuital laws CO5 To study magnetic materials and its properties CO6 Demonstrate quantitative problem solving skills in all the topics covered.
Physics Practical 1&2	CO1 Study and use of various measuring Instruments like Vernier calliper, Micrometer Screw Gauge, Travelling Microscope. CO2 Practical studies of different motions. CO3 Study of surface tension by Jaeger's method. CO4 Study of Spectrometer and determination of angle of prism. CO5 Study of divergence of LASER beam. CO6 Determination of Plank's constant and its practical uses. CO7 Study of temperature coefficient of Thermistor. CO8 Study of temperature related properties and its application.

CO9 Study of various circuit types such as f LR circuit, LCR circuit etc. CO10 To understand Diode characteristics. CO11 Comparison of capacitor using DeSauty's method.

B.Sc. (Zoology)

S.R.	Programme Outcomes
PO1	Demonstrate, solve and an understanding of major concepts in all
	disciplines of Zoology.
PO2	Solve the problem and also think methodically, independently and
	draw a logical conclusion.
PO3	Understand the evolution, history of phylum.
PO4	Create an awareness of the impact of Zoology on the environment,
	society, and development outside the scientific community.
PO5	Use modern techniques, decent equipment and Zoology software's.
PO6	To inculcate the scientific temperament in the students and outside
	the scientific community.

S.R.	Programme Specific Outcomes
PSO1	Gain the knowledge of Zoology through theory and practical's.
PSO2	Study and understand the DNA Recombinant technology.
PSO3	Understand good laboratory practices and safety.
PSO4	Develop research oriented skills.

Subject	Course Outcomes (F.Y.B.Sc)
Animal	CO1 To understand the Animal diversity around us.
Diversity I	CO2 To understand the underlying principles of classification
	of animals.
	CO3 To understand the terminology needed in classification.
	CO4 To understand the differences and similarities in the
	various aspects of classification.
	CO5 To classify invertebrates and to be able to understand the
	possible group of the invertebrate observed in nature.
	CO6 To understand our role as a caretaker and promoter of life.

Animal	CO1 To understand impact on account an and higgsham due to		
Animal	CO1 To understand impact on ecosystem and biosphere due to		
Ecology	the dynamics in population.		
	CO2 To understand anticipate, analyse and evaluate natural		
	resource issues and act on a lifestyle that conserves nature.		
	CO3 To understand diversity of ecosystems and applies beyond the syllabi to understand the local lifestyle and problems of the		
	•		
	community. CO4 To study food chains, food webs and link it with human		
	CO4 To study food chains, food webs and link it with human		
	life for its betterment and for non-exploitation of the biotic and		
	abiotic.		
	CO5 The working in nature to save environment will help		
	development of leadership skills to promote betterment of		
	environment.		
Animal	CO1 The student will be able to understand classify and		
Diversity II	II identify the diversity of animals.		
	CO2 The student understands the importance of classification		
	of animals and classifies them effectively using the six levels of		
	classification.		
	CO3 To understand role in nature as a protector, preserver and		
	promoter of life which he has achieved by learning, observing		
	and understanding life.		
Cell	CO1 The learner will understand the importance of cell as a		
biology	structural and functional unit of life.		
	CO2 The learner understands and compares between the		
	prokaryotic and eukaryotic system and extrapolates the life to		
	the aspect of development.		
	CO3 The dynamism of bio membranes indicates the dynamism		
	of life. Its working mechanism and precision are responsible for		
	our performance in life.		
	CO4 The cellular mechanisms and its functioning depends on		
	endo-membranes and structures. They are best studied with		
	microscopy.		
<u> </u>			

Zoology	CO1 To study different phylum in kingdom Animalia.
Practical	CO2 Study of permanent slides in zoology.
1&2	CO3 . Estimation of Dissolved oxygen from water sample.
	CO4 Determination of density, frequency and abundance of
	species by quadrat method.
	CO5 Study of microscopic fauna of freshwater ecosystem.
	CO6 . Study of Eutrophication in lake/river.
	CO7 To study Economic importance of honey bees, Lac insects
	silk worms, red cotton bug, Anopheles mosquito
	CO8 .Study of Microscope for microscopic visualization.
	CO9 Study of animal cell in detail.
	CO10 Preparation of blood smears to observe the blood cells.

B.Sc. (Statistics)

S.R.	Programme Outcomes
PO1	Recall and explain acquired scientific knowledge in a comprehensive
	manner and apply the skills acquired in their chosen discipline.
PO2	Interpret scientific ideas and relate its interconnectedness to various
	fields in science
PO3	Evaluate scientific ideas critically, analyse problems, explore options
	for practical demonstrations, illustrate work plans, execute & draw
	inferences.
PO4	Explore and evaluate digital information and use it for knowledge
	Upgradation.
PO5	Apply relevant information so gathered for analysis and
	communication using appropriate digital tools.

S.R.	Programme Specific Outcomes
PSO1	Understand, condense, visualize, analyse and interpret the data
	collected in daily walk of life.
PSO2	Understand the data generated in various scenarios of scientific,
	industrial, or social problems.
PSO3	Enhance knowledge of Statistical tools
PSO4	Pursue their higher education programs leading to post-graduate or
	doctoral degrees.

Subject	Course Outcomes (F.Y.B.Sc)
Descriptive	CO1 To compute various measures of central tendency,
Statistics I	dispersion, skewness and kurtosis.
	CO2 To analyse data pertaining to attributes and to interpret
	the results.

Discrete	CO1 To distinguish between random and non-random
Probability	experiments.
and	CO2 To find the probabilities of events.
Probability	CO3 To obtain a probability distribution of random variable
Distributions	(one or two dimensional) in the given situation.
I	
Descriptive Statistics II	CO1 To compute the correlation coefficient for bivariate data and interpret it.
	CO2 To fit linear, quadratic and exponential curves to the
	bivariate data to investigate relation between two variables
	CO3 To compute and interpret various index numbers.
Discrete	CO1 To apply standard discrete probability distribution to
Probability	different situations.
and	CO2 To study properties of these distributions as well as
Probability	interrelation between them.
Distributions	
II	
Statistics Practical	CO1 To use various graphical and diagrammatic techniques and interpretation.
Paper 1 & 2	CO2 To analyse data pertaining to discrete and continuous variables and to interpret the results.
	CO3 To compute various measures of central tendency,
	dispersion, skewness and kurtosis.
	CO4 To interpret summary statistics of computer output.
	CO5 To summarize and analyse the data using computer.
	CO6 To compute correlation coefficient, regression
	coefficients.
	CO7 To compute probabilities of bivariate distributions.
	CO8 To fit binomial and Poisson distributions.
	CO9 To compute probabilities of bivariate distributions.
	CO10 To draw random samples from Poisson and binomial
	distributions.

B.Sc. (Microbiology)

S.R.	Programme Outcomes
PO1	Acquired knowledge and understanding of the microbiology concepts
	as applicable to diverse areas such as medical, industrial,
	environment, genetics, food etc.
PO2	Demonstrate key practical skills in working with microbes.
PO3	Use of good microbiological practices.
PO4	To acquire good lab Discipline to maintain sterile conditions.

S.R.	Programme Specific Outcomes
PSO1	The students are also trained in such a way that they develop critical
	thinking and problem solving as related to the microbiology.
PSO2	Students should have the appropriate skills of Microbiology so as to
	perform their duties as microbiologists.
PSO3	Students must be able to analyse the problems related to
	microbiology and come up with most suitable solutions.
PSO4	To develop good lab skills for culturing contamination free cultures.

Subject	Course Outcomes (F.Y.B.Sc)
Introduction	CO1 To study Amazing world of Microbiology.
to Microbial	CO2 To study types of Microorganism and their
World	differentiating characters.
	CO3 To study Beneficial and Harmful effects of
	microorganisms.
Basic	CO1 To study Microscopy related to microbiology and
Techniques	staining techniques.
in	CO2 To study different Sterilization and Disinfection
Microbiology	methods in microbiology.

Bacterial	CO1 To study Bacterial Cytology and its structure and
Cell and	functions.
Biochemistry	CO2 To study of biochemistry in microbiology.
Microbial	CO1 To study cultivation and maintenance methods related to
cultivation	microbes.
and growth	CO2 To study growth kinetics during microbial growth.
Microbiology	CO1 To study Safety measures and Good Laboratory
Practical	Practices in microbiology laboratory
Paper 1 & 2	CO2 To study mounting and staining of specimen.
	CO3 To study detail microscopy.
	CO4 To study Basic staining techniques: Monochrome
	staining, Negative staining, Gram staining of bacteria.
	CO5 To study Preparation of simple laboratory nutrient
	media.
	CO6 To study Special staining techniques.
	CO7 To study different isolation techniques in microbiology.